

Международная лаборатория микрофизиологических систем

Москва **2024**

Ферроптоз. Особенности и механизмы

SINCE 2023

Регуляторные пути ферроптоза, связанные с метаболизмом липидов и ионов железа

Химия реакции железозависимого перекисного окисления

MTS test: влияние ДПНЖК на жизнеспособность клеток

Рисунок 2. Влияние ДПНЖК из классов омега-6 и омега-3 на жизнеспособность клеток MDA-MB-231 с нокдаунами генов *ELOVL5* и *IGFBP6* и контрольной линии (*LUC*)

Нокдаун генов ELOVL5 или IGFBP6 повышает чувствительность к ферроптозу

Рисунок. 3. Оценка чувствительности клеток MDA-MB-231 к ферроптозу при их обработке стандартными препаратами эрастином и ферростатином-1 в различных сочетаниях в течение 24 ч. Столбики погрешностей представляют собой стандартную ошибку среднего (SEM, n = 3) * - p < 0,05 по сравнению с чистым эрастином

- р < 0,05 по сравнению с контрольными клетками

Нокдаун генов ELOVL5 или IGFBP6 повышает чувствительность к ферроптозу

Рисунок. 4. Оценка чувствительности клеток MDA-MB-231 к ферроптозу при их обработке ДПНЖК и ферростатином-1 в течение 24 часов. Концентрация для LA, AA и ALA составляла 300 мкМ и для DHA 200 мкМ. Столбики погрешностей представляют собой стандартную ошибку среднего (SEM, n = 3) * - p < 0,05 по сравнению с чистыми ДПНЖК

Снижение активности GPx4 является потенциальной причиной повышенной чувствительности к ферроптозу

регулирующих ферроптоз MAPILC3A VDAC3 NCOA4 NOOA4.1 HMOX1 HMOX1.1 ATG7 LPCAT3 ATG5 ACSL4 TP53 TP53.1 GPX4 GCLM ACSL1 MAP1LC3B -2 SLC39A14 SLC3A2 SLC3A2 SAT1.1 SAT2 PRNP MAP1LC3C ALOX15 STEAPS FTHI.1 ACSL5 PC8P1 PCAT3 PO8P2 TYRE FTE 1 ACSL3 SLC40A1 SLC39A8 SLC39A8. SLC40A1. SLC11A2 SLC11A2.1 TMT SLC7A1 VDAC2.1 VDAC2 IGFBP6 IGFBP6_ LUC LUC LUC_ ELOVL5 ELOVL5 ELOVL5 GFBP6 ω

Тепловая карта экспрессии генов,

Рисунок 5. Роль GPx4 в ферроптозе. GSH – глутатион; GSSG – дисульфид глутатиона; GPx4 – глутатионпероксидаза 4; ROS – реактивные формы кислорода; GSR – глутатиондисульфидредуктаза.

Снижение активности GPx4 является потенциальной причиной повышенной чувствительности к ферроптозу

Рисунок 6. Активность глутатионпероксидазы, измеренная в клеточных лизатах на 1 миллион клеток после 10 минут инкубации. Столбики погрешностей представляют собой стандартную ошибку среднего (SEM, n = 3). * - p < 0,05 по сравнению с контрольными клетками

Нокдаун генов ELOVL5 или IGFBP6 активирует генерацию ROS из внешних ДПНЖК

Рисунок 7. Фотографии клеток MDA-MB-231 в культуральной среде без внешних ДПНЖК и с добавлением 300 мкМ LA или 200 мкМ DHA. Длина отрезка масштаба – 50 мкм

Нокдаун гена *IGFBP6* снижает накопление липидных капель

липидная капля

Таблица 1. Достоверно изменившаяся (FDR p < 0,05) экспрессия генов регуляции биосинтеза и транслокации ТАГ после нокдауна гена *IGFBP6* по данным транскриптомного анализа

Ген	Кодируемый белок	Кратность изменения	р-уровень значимости
AGPAT3	1-ацилглицерин-3-фосфат О- ацилтрансфераза	-1,63	3,43·10 ⁻⁸
GPAT2	глицерин-3-фосфат О-ацилтрансфераза, митохондриальная	-1,22	4,10·10 ⁻³
GPAT3	глицерин-3-фосфат ацилтрансфераза 3	-1,58	3,50·10 ⁻³
DGAT1	диацилглицерин О-ацилтрансфераза 1	-1,70	1,69.10-5

триацилглицериды (ТАГ)

Нокдаун гена *IGFBP6* снижает накопление липидных капель

Рисунок 8. Окрашивание липидных капель в клетках MDA-MB-231 в контрольной среде и в среде, содержащей 50 мкM LA, AA, ALA и DHA. Длина отрезка масштаба – 50 мкм. Ядра (синие) окрашивали 4',6-диамидино-2-фенилиндолом (DAPI), липидные капли (красные) окрашивали Oil Red O

PCA rlog

Нокдаун генов *ELOVL5* или *IGFBP6* изменяет транскриптомные профили клеток MDA-MB-231 в ответ на воздействие DHA и эрастина

Рисунок 9. Анализ главных компонент для идентификации генов, коррелирующих и антикоррелирующих с главными компонентами (клеточные линии и тип воздействия) двумерного пространства PCA

Контрольная линия после обработки 50 мкМ DHA

Обогащенные наборы генов (р < 0,05)	NES
Репликация ДНК	2,09
Активация пре-репликативного комплекса	2,05
Прохождение контрольных точек	1 07
клеточного цикла	1,37

Клетки MDA-MB-231 после обработки 200 мкМ DHA

Обогащенные наборы	NES		
генов (р < 0,05)	Control	kd <i>ELOVL</i> 5	kd <i>IGFBP</i> 6
NRF2-опосредованная регуляция антиоксидантных ферментов детоксикации	2,00	2,06	2,16
Ферроптоз	1,67	1,47	2,13

*NES (Normalized Enrichment Score) – нормализованная оценка обогащения .по сравнению с контрольными условиями (без обработки препаратом)

Нокдаун генов *ELOVL5* или *IGFBP6* изменяет транскриптомные профили клеток MDA-MB-231 в ответ на воздействие DHA и эрастина

После обработки 2,5 мкМ эрастина

Гон	Кратность изменения (FDR <i>p</i> < 0,05)			
Теп	Control	kd <i>ELOVL5</i>	kd <i>IGFBP</i> 6	
SLC7A11	12,0	6,8	2,2	
SAT1	1	1	4,9	

После обработки 200 мкМ DHA

Гоц	Кратность изменения (FDR <i>p</i> < 0,05)			
Теп	Control	kd <i>ELOVL</i> 5	kd <i>IGFBP</i> 6	
SLC7A11	4,4	3,2	3,0	
SAT1	1	-2,0	3,0	

Комбинация препаратов SOC с индукторами ферроптоза

Рисунок 10. Результаты испытаний лекарственных препаратов SOC и их комбинации с DHA и эрастином на сфероидах в матригеле из клеток MDA-MB-231. Столбики погрешностей представляют собой стандартную ошибку среднего (SEM, n = 3) * - p < 0,05 по сравнению с соответствующей обработкой чистым SOC (без DHA или эрастина) # - p < 0,05 по сравнению с соответствующими условиями без препаратов SOC

Основные выводы:

-) Снижение экспрессии либо гена *ELOVL5*, либо гена *IGFBP6* повышает чувствительность клеток рака молочной железы MDA-MB-231 к ω-3 и ω-6 ДПНЖК, которые вызывают гибель клеток путем активации ферроптоза.
- 2) Снижение активности основного антиоксидантного фермента GPx4, усиление генерации ROS и нарушения аккумулирования липидных капель в клетках после нокдаунов маркерных генов, вероятно, являются ключом к более низкому антиоксидантному потенциалу и, как следствие, к более высокой чувствительности к ферроптозу.
- 3) Все три клеточные линии MDA-MB-231 (контрольная, с нокдауном гена *ELOVL5* и с нокдауном гена *IGFBP6*) существенно отличаются друг от друга на уровне экспрессии.
- 4) Обработка клеток 50 мкМ DHA приводит к достоверному обогащению наборов генов, обеспечивающих пролиферацию, что подтверждает стимулирующие рост эффекты малых концентраций ДПНЖК, особенно на контрольные клетки MDA-MB-231. При этом обработка всех клеточных линий 200 мкМ DHA стимулирует усиленную регуляцию генов, ассоциированных с ферроптозом, причем наиболее эффективно такая регуляция протекает в клетках с нокдауном гена *IGFBP6*, что хорошо согласуется с большей чувствительностью данных клеток к индукции ферроптоза.
- 5) Комбинации стандартных химиотерапевтических средств с индукторами ферроптоза могут значительно усиливать действие препаратов, особенно для клеток с низкой экспрессией гена *IGFBP6*.

Спасибо за внимание!

Москва, 2024 год

Нокдаун генов ELOVL5 и IGFBP6 влияет липидный метаболизм

Рисунок S2. a) Схематическое изображение процесса элонгации жирных кислот; б) Тепловая карта экспрессии генов, регулирующих элонгацию жирных кислот

Нокдаун генов ELOVL5 и IGFBP6 влияет на поглощение внешних жирных кислот

Рисунок S3. Кинетика изменения концентрации различных ДПНЖК (LA, AA, ALA и DHA) в культуральной среде в присутствии контрольных клеток MDA-MB-231 и клеток с нокдауном генов *ELOVL5* и *IGPBP6*. Столбики погрешностей представляют собой стандартное отклонение (SD, n = 2)

Нокдаун генов ELOVL5 и IGFBP6 влияет на поглощение внешних жирных кислот

Рисунок S4. Рассчитанные скорости поглощения (на одну клетку) различных ДПНЖК (LA, AA, ALA и DHA) для контрольных клеток MDA-MB-231 и для клеток с нокдауном генов *ELOVL5* и *IGPBP6.* Столбики погрешностей представляют собой 95% доверительные интервалы

Нокдаун генов *ELOVL5* или *IGFBP6* активирует генерацию ROS из внешних ДПНЖК

Рисунок S5. Оценка окислительного стресса в клетках MDA-MB-231 под влиянием различных ДПНЖК путем детекции активных форм кислорода (ROS). Столбики погрешностей представляют собой стандартную ошибку среднего (SEM, n = 3)

Нокдаун гена *IGFBP6* снижает накопление липидных капель

Рисунок S6. Количественное определение липидных капель в клетках MDA-MB-231 после обработки различными ДПНЖК. На диаграмме представлена абсорбция экстрагированного Oil Red O. Столбики погрешностей представляют собой стандартную ошибку среднего значения (SEM, n = 3)

Цитотоксический эффект ДПНЖК нельзя объяснить апоптозом

Рисунок S7. Влияние различных ДПНЖК на активацию апоптоза в клетках MDA-MB-231. Двумерные графики интегральной интенсивности флуоресценции конъюгата аннексина V с красителем Alexa Fluor 488 (горизонтальная ось) и интегральной интенсивности флуоресценции йодида пропидия (вертикальная ось) в клетках с нокдауном генов *ELOVL5* или *IGFBP6*, а также в контрольных клетках

·UKOTA · JKOHO

Нокдаун генов *ELOVL5* или *IGFBP6* изменяет транскриптомные профили клеток MDA-MB-231 в ответ на воздействие DHA и эрастина

Рисунок S8. Диаграммы Венна, показывающие общее количество дифференциально экспрессируемых генов в каждой клеточной линии, значимо снизивших свою экспрессию после обработки A) 200 мкМ DHA и Б) 2,5 мкМ эрастина

Нокдаун генов *ELOVL5* или *IGFBP6* изменяет транскриптомные профили клеток MDA-MB-231 в ответ на воздействие DHA и эрастина

Рисунок S9. Диаграммы Венна, показывающие общее количество дифференциально экспрессируемых генов в клетках с нокдауном *IGFBP6*, A) значимо снизивших свою экспрессию или Б) значимо повысивших свою экспрессию по сравнению с контрольными условиями в результате воздействия 200 мкМ DHA или 2,5 мкМ эрастина

Рисунок S10. Диаграммы Венна, показывающие общее количество дифференциально экспрессируемых генов в контрольной линии и в клетках с нокдауном *ELOVL5*, A) значимо снизивших свою экспрессию или Б) значимо повысивших свою экспрессию по сравнению с контрольными условиями в результате воздействия 200 мкМ DHA или 2,5 мкМ эрастина

Нокдаун генов *ELOVL5* или *IGFBP6* изменяет транскриптомные профили клеток MDA-MB-231 в ответ на воздействие DHA и эрастина

Рисунок S11. Тепловая карта экспрессии генов, участвующих в регуляции ферроптоза. Приведены данные для трех биологических повторов для каждой линии (контрольной, с нокдауном *ELOVL5* и с нокдауном *IGFBP6*) после обработки клеток 200 мкМ DHA или 2,5 мкМ эрастина

Нокдаун генов ELOVL5 или IGFBP6 изменяет транскриптомные профили клеток MDA-MB-231

Изменившаяся по данным секвенирования экспрессия генов в клетках с нокдаунами ELOVL5 и IGFBP6 относительно контрольной линии MDA-MB-231

Гоц	Кратность изменения (р < 0,05)		
ГСП	kd <i>ELOVL</i> 5	kd <i>IGFBP</i> 6	
GPx4	1	-1,73	
AGPAT3	1	-1,63	
GPAT2	-4,17	1	
DGAT1	-1,98	-1,73	

Транскриптомный анализ на микрочипах

Тепловая карта экспрессии генов, регулирующих ферроптоз

Тепловая карта экспрессии генов, регулирующих глутатионовый путь ингибирования ферроптоза

Схема синтеза ДПНЖК

Секвенирование MGI

Нокдаун генов ELOVL5 или IGFBP6 активирует генерацию ROS из внешних ДПНЖК

