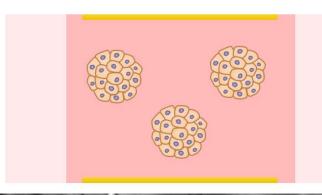
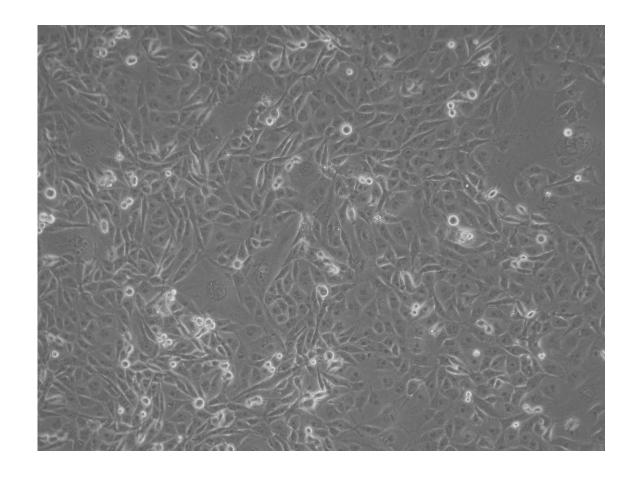
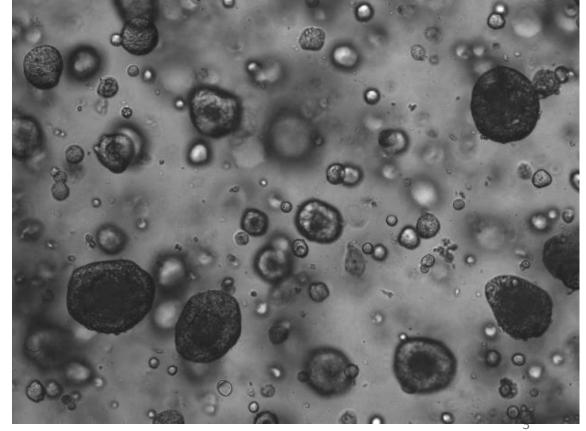


Научно-учебная группа «Изучение биологии рака на модели опухолевых органоидов»

Москва 2025

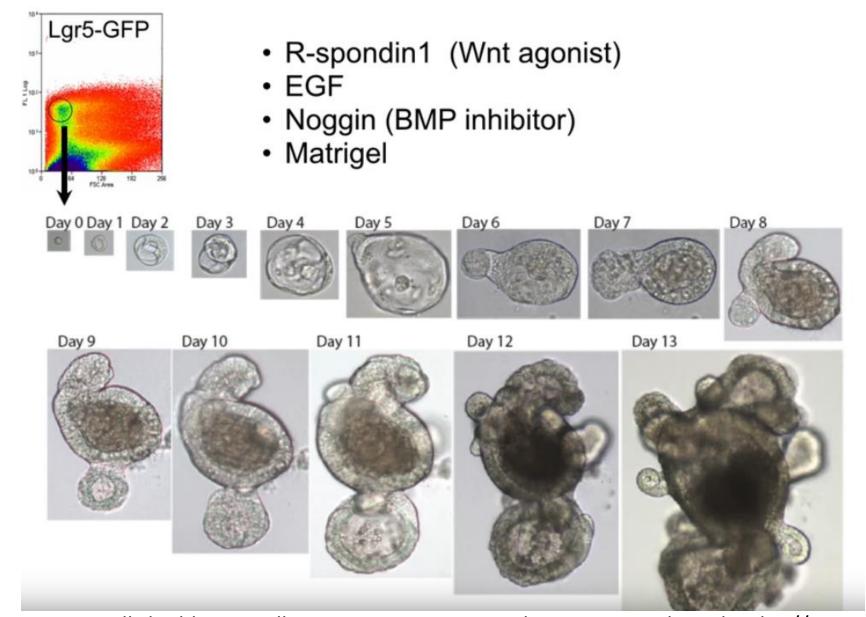

Опухолевые органоиды: Модель для изучения рака или будущее клинической онкологии?


Никулин Сергей Вячеславович, к.б.н.


Опухолевые органоиды

2D против 3D

Органоиды



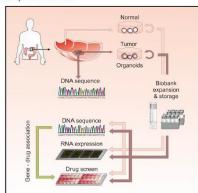
Toshiro Sato

Hans Clevers

Single Lgr5 cells form mini-guts in 3D-culture

Sato T. et al. Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche //Nature. – 2009. – T. 459. – №. 7244. – C. 262-265.

Опухолевые органоиды (тумороиды)


Cell

Resource

Prospective Derivation of a Living Organoid Biobank of Colorectal Cancer Patients

Graphical Abstract

medicine

Authors

Marc van de Wetering, Hayley E. Francies, ..., Mathew J. Garnett, Hans Clevers

Correspondence

mg12@sanger.ac.uk (M.J.G.), h.clevers@hubrecht.eu (H.C.)

In Brief

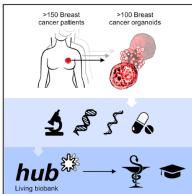
3D organoid cultures derived from healthy and tumor tissue from colorectal cancer patients are used for a high throughput drug screen to identify genedrug associations that may facilitate personalized therapy.

ARTICLE

https://doi.org/10.1038/s41467-019-11867-6

Patient-derived lung cancer organoids as in vitro cancer models for therapeutic screening

Minsuh Kim1, Hyemin Mun1, Chang Oak Sung1,2, Eun Jeong Cho 1, Hye-Joon Jeon1, Sung-Min Chun1,2, Da Jung Jung 5, Tae Hoon Shin 3, Gi Seok Jeong 5, Dong Kwan Kim4, Eun Kyung Choi5, Seong-Yun Jeong 5, Alison M. Taylor⁶, Seial Jain⁶, Matthew Meyerson 6 & Se Jin Jang^{1,2}


Please cite this article in press as: Boj et al., Organoid Models of Human and Mouse Ductal Pancreatic Cancer, Cell (2015), http://dx.doi.org/ 10.1016/i.cell.2014.12.021

Cell

A Living Biobank of Breast Cancer Organoids **Captures Disease Heterogeneity**

Graphical Abstract

Authors

Norman Sachs, Joep de Ligt, Oded Kopper, ..., Robert Gerhardus Jacob Vries, Edwin Cuppen, Hans Clevers

Resource

Correspondence

h.clevers@hubrecht.eu

In Brief

The heterogeneity of breast cancer subtypes can be captured using organoid cultures that can facilitate drug screens that corroborate with patient responses.

Resource

The Journal of Clinical Endocrinology & Metabolism, 2021, Vol. 106, No. 5, 1410-1426 doi:10.1210/clinem/dgab020 Clinical Research Article

RESOURCE https://doi.org/10.1038/s41591-019-0422-6

https://doi.org/10.1038/s41591-019-0422-6

An organoid platform for ovarian cancer captures intra- and interpatient heterogeneity

Oded Kopper^{1,2}, Chris J. de Witte^{3,15}, Kadi Lõhmussaar^{1,2,15}, Jose Espejo Valle-Inclan^{3,15}, Nizar Hami^{2,4}, Lennart Kester^{1,2}, Anjali Vanita Balgobind^{1,2}, Jeroen Korving^{1,2}, Natalie Proost⁵, Harry Begthel^{1,2}, Lise M. van Wijk⁶, Sonia Aristín Revilla^{1,2}, Rebecca Theeuwsen⁵, Marieke van de Ven⁵, Markus J. van Roosmalen³, Bas Ponsioen^{2,4}, Victor W. H. Ho⁷, Benjamin G. Neel^{7,8}, Tjalling Bosse⁹, Katja N. Gaarenstroom¹⁰, Harry Vrieling⁶, Maaike P. G. Vreeswijk⁶, Paul J. van Diest¹¹, Petronella O. Witteveen¹², Trudy Jonges¹¹, Johannes L. Bos^{2,4}, Alexander van Oudenaarden^{1,2}, Ronald P. Zweemer¹³, Hugo J. G. Snippert^{2,4}, Wigard P. Kloosterman^{⊕3*} and Hans Clevers ^{⊕1,2,14*}

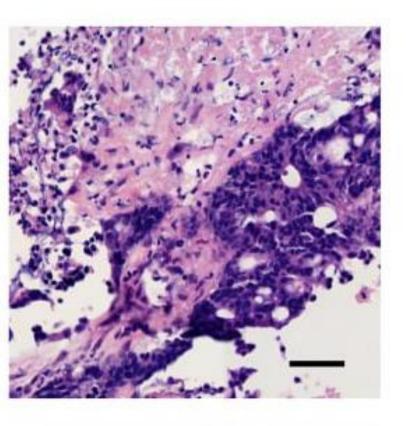
Organoid Models of Human and Mouse Ductal Pancreatic Cancer

Sylvia F. Boj, 1,2,14 Chang-II Hwang, 3,4,14 Lindsey A. Baker, 3,4,14 lok In Christine Chio, 3,4,14 Dannielle D. Engle, 3,4,14 Vincenzo Corbo, 3,4,14 Myrthe Jager, 1,14 Mariano Ponz-Sarvise, 3,4 Hervé Tiriac, 3,4 Mona S. Spector, 3,4 Ana Gracanin, 1,2 Tobiloba Oni, 3,4,5 Kenneth H, Yu, 3,4,6,7 Ruben van Boxtel, 1 Meritxell Huch, 1,15 Keith D. Rivera, 3 John P. Wilson, 3 Michael E. Feigin, 3.4 Daniel Öhlund, 3.4 Abram Handly-Santana, 4.8 Christine M. Ardito-Abraham, 3.4 Michael Ludwig, 3.4 Ela Elyada, 3,4 Brinda Alagesan, 3,4,9 Giulia Biffi, 3,4 Georgi N, Yordanov, 4,8 Bethany Delcuze, 3,4 Brianna Creighton, 3 Kevin Wright, 3.4 Youngkyu Park, 3.4 Folkert H.M. Morsink, 10 I. Quintus Molenaar, 11 Inne H. Borel Rinkes, 11 Edwin Cuppen, 1 Yuan Hao, Ting Jin, Saac J. Nijman, Christine lacobuzio-Donahue, Steven D. Leach, Darryl J. Pappin, Molly Hammell, David S. Klimstra, 2 Olca Basturk, Ralph H. Hruban, George Johan Offerhaus, Robert G.J. Vries, 12 Hans Clevers,1,* and David A. Tuveson3,4,6,*

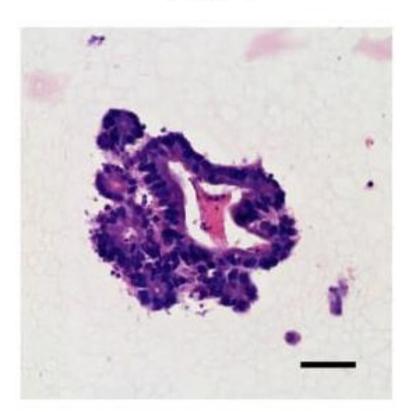
Clinical Research Article

Organoid Cultures Derived From Patients With Papillary Thyroid Cancer

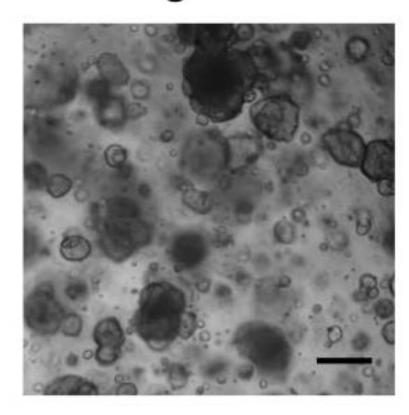
Dong Chen, 1,3* Yawen Tan, 2* Zhichao Li, 1 Wujiao Li, 1 Lei Yu, 1 Wei Chen, 1 Yuchen Liu,1 Lisa Liu, Liangfeng Guo, Weiren Huang, 1,3 and Yongsheng Zhao^{1,4}

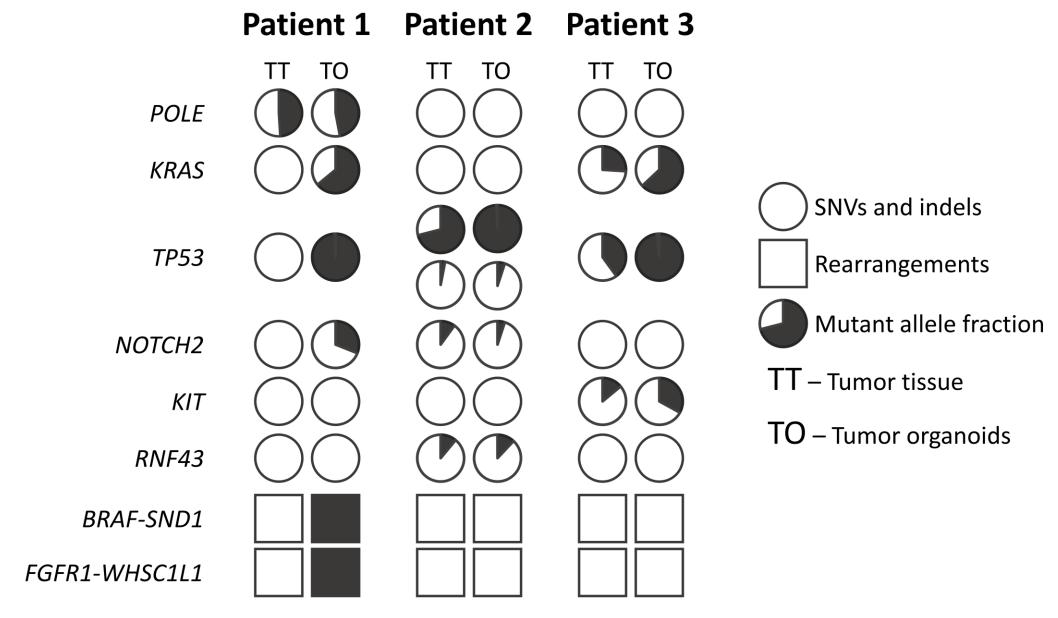

¹Institute of Shenzhen Translational Medicine, Shenzhen Second People's Hospital, the First Affiliated Hospital of Shenzhen University, Shenzhen 518035, Guangdong, China; ²Department of Breast and Thyroid Surgery, Shenzhen Second People's Hospital, Shenzhen 518035, Guangdong, China; 3Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, Guangdong, China; and ⁴Department of Nuclear Medicine, Peking University Shenzhen Hospital, Shenzhen 518036, Guangdong, China

ORCiD number: 0000-0001-5432-2847 (Y. Zhao).


*Dong Chen and Yawen Tan contributed equally to this work

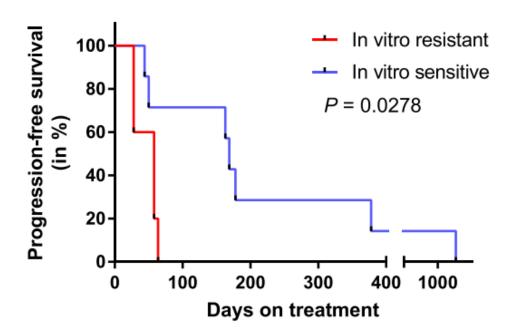
Опухолевые органоиды (тумороиды)


Tumor Tissue H&E


Tumor Organoids H&E

Tumor Organoids Brightfield

Опухолевые органоиды (тумороиды)


SCIENCE TRANSLATIONAL MEDICINE | RESEARCH ARTICLE

CANCER

Patient-derived organoids can predict response to chemotherapy in metastatic colorectal cancer patients

Salo N. Ooft^{1,2}*, Fleur Weeber^{1,2}*, Krijn K. Dijkstra^{1,2†}, Chelsea M. McLean^{1,2†}, Sovann Kaing^{1,2}, Erik van Werkhoven³, Luuk Schipper^{1,2}, Louisa Hoes^{1,2}, Daniel J. Vis^{2,4}, Joris van de Haar^{1,2,4}, Warner Prevoo⁵, Petur Snaebjornsson⁶, Daphne van der Velden^{1,2‡}, Michelle Klein^{1,2}, Myriam Chalabi¹, Henk Boot⁷, Monique van Leerdam⁷, Haiko J. Bloemendal⁸, Laurens V. Beerepoot⁹, Lodewyk Wessels^{2,4,10}, Edwin Cuppen^{2,11,12}, Hans Clevers^{2,13,14}, Emile E. Voest^{1,2,7§}

There is a clear and unmet clinical need for biomarkers to predict responsiveness to chemotherapy for cancer. We developed an in vitro test based on patient-derived tumor organoids (PDOs) from metastatic lesions to identify nonresponders to standard-of-care chemotherapy in colorectal cancer (CRC). In a prospective clinical study, we show the feasibility of generating and testing PDOs for evaluation of sensitivity to chemotherapy. Our PDO test predicted response of the biopsied lesion in more than 80% of patients treated with irinotecan-based therapies without misclassifying patients who would have benefited from treatment. This correlation was specific to irinotecan-based chemotherapy, however, and the PDOs failed to predict outcome for treatment with 5-fluorouracil plus oxaliplatin. Our data suggest that PDOs could be used to prevent cancer patients from undergoing ineffective irinotecan-based chemotherapy.

RESEARCH

ORGANOIDS

Patient-derived organoids model treatment response of metastatic gastrointestinal cancers

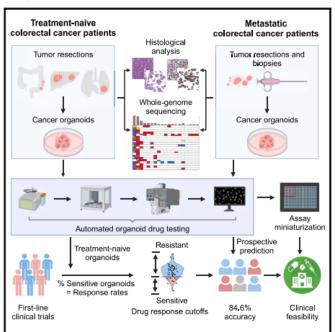
Georgios Vlachogiannis, ¹ Somaieh Hedayat, ¹ Alexandra Vatsiou, ² Yann Jamin, ³ Javier Fernández-Mateos, ^{1,2} Khurum Khan, ^{1,4} Andrea Lampis, ¹ Katherine Eason, ¹ Ian Huntingford, ¹ Rosemary Burke, ⁵ Mihaela Rata, ³ Dow-Mu Koh, ^{3,6} Nina Tunariu, ^{3,6} David Collins, ³ Sanna Hulkki-Wilson, ¹ Chanthirika Ragulan, ¹ Inmaculada Spiteri, ² Sing Yu Moorcraft, ⁴ Ian Chau, ⁴ Sheela Rao, ⁴ David Watkins, ⁴ Nicos Fotiadis, ⁶ Maria Ball, ^{3,6} Mahnaz Darvish-Damavandi, ¹ Hazel Lote, ^{1,4} Zakaria Eltahir, ¹ Elizabeth C. Smyth, ⁴ Ruwaida Begum, ⁴ Paul A. Clarke, ⁵ Jens C. Hahne, ¹ Mitchell Dowsett, ⁷ Johann de Bono, ⁸ Paul Workman, ⁵ Anguraj Sadanandam, ¹ Matteo Fassan, ⁹ Owen J. Sansom, ¹⁰ Suzanne Eccles, ³ Naureen Starling, ⁴ Chiara Braconi, ^{4,5} Andrea Sottoriva, ² Simon P. Robinson, ³ David Cunningham, ⁴ Nicola Valeri^{1,4*}

Patient-derived organoids (PDOs) have recently emerged as robust preclinical models; however, their potential to predict clinical outcomes in patients has remained unclear. We report on a living biobank of PDOs from metastatic, heavily pretreated colorectal and gastroesophageal cancer patients recruited in phase 1/2 clinical trials. Phenotypic and genotypic profiling of PDOs showed a high degree of similarity to the original patient tumors. Molecular profiling of tumor organoids was matched to drug-screening results, suggesting that PDOs could complement existing approaches in defining cancer vulnerabilities and improving treatment responses. We compared responses to anticancer agents ex vivo in organoids and PDO-based orthotopic mouse tumor xenograft models with the responses of the patients in clinical trials. Our data suggest that PDOs can recapitulate patient responses in the clinic and could be implemented in personalized medicine programs.

sequencing studies of primary CRC (11) or gastroesophageal cancer (GOC) (12) was applied in our cohort, we found no correlation between PDO take-up rate and tumor percentage, suggesting that PDOs can also be established in cases of a low tumor/stroma ratio, thus allowing the ex vivo expansion of the cancer population in samples that would have otherwise failed quality-control tests for next-generation sequencing (NGS).

PDOs presented in this study were derived from ultrasound (n=20), computed tomography (CT)–guided (n=7), or endoscopic (n=2) biopsies of metastatic CRC (mCRC; n=16), metastatic GOC (mGOC; n=4), and metastatic cholangio-carcinoma (n=1) patients (fig. S1). Liver, pelvic, peritoneal, and nodal metastases of chemorefractory patients were used to establish PDOs. In several cases, PDOs were established from sequential biopsies at baseline (BL), at the time of best response [Partial response (PR) or stable disease (SD)], and at the time of disease progression (PD), as well as from multiregion biopsies (table S1).

Histological evaluation revealed notable morphological similarities between PDOs and the patient biopsies from which they were originally derived (Fig. 1, A and B, and figs. S2A and S2B.) Immunohistochemistry markers routinely used in the diagnosis of CRC (CDX-2 and CK7) showed that the parental tumor's expression pattern was maintained in PDOs, even when derived from sequential biopsies during treatment (fig. S2, C to E). Similarly, amplification of oncogenic drivers such as ERBEZ (Fig. 1C and fig. S2P) and re-


		Respons		
		R	NR	
Ex Vivo	S	7	1*	8
Sensitivity	NS	0	13	10
		7	14	21

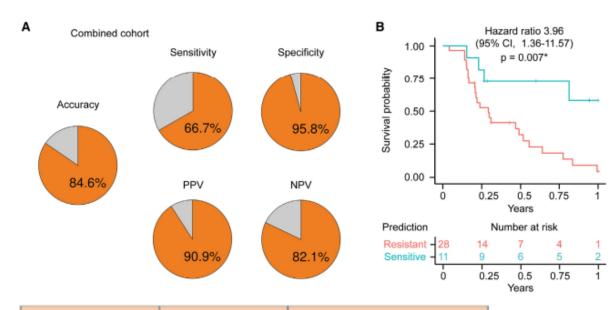
Cell Reports Medicine

Article

Unified framework for patient-derived, tumororganoid-based predictive testing of standard-ofcare therapies in metastatic colorectal cancer

Graphical abstract

Authors


Tao Tan, Dmitri Mouradov, Margaret Lee, ..., Antony W. Burgess, Peter Gibbs, Oliver M. Sieber

Correspondence

sieber.o@wehi.edu.au

In brief

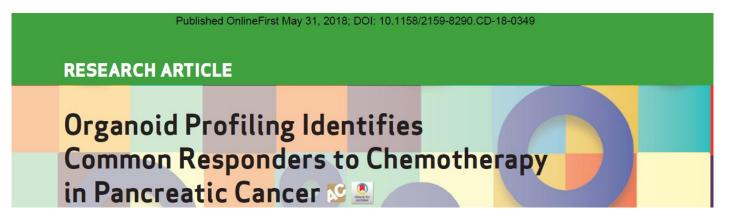
Tan et al. describe a framework for predictive tumor-organoid-based testing of standard-of-care therapies for patients with metastatic colorectal cancer, demonstrating assay accuracy and feasibility of clinical reporting. Predictive organoid drug testing can complement routine genomic marker analyses, facilitating selection of the most active agents and avoidance of ineffective treatments.

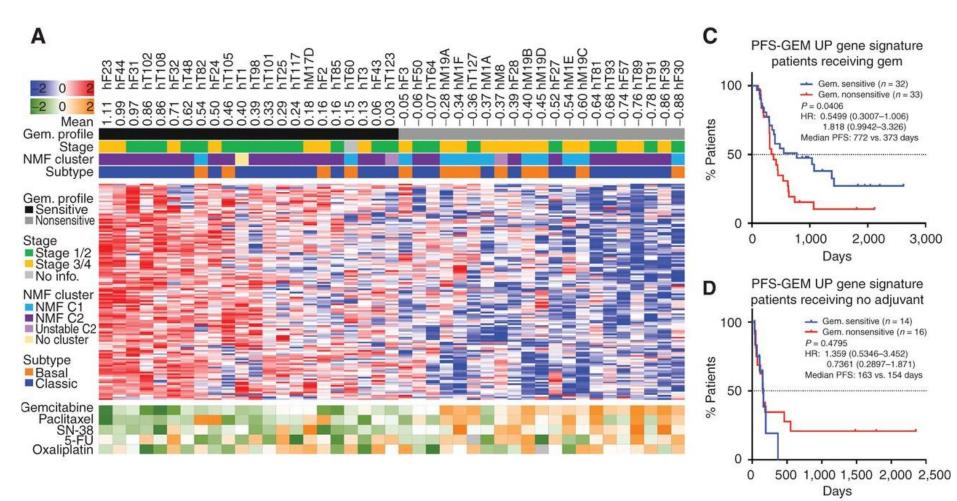
	Drug	Relative sensitivity		′		
Ph III RCT demonstrating survival benefit	TAS102					
	Regorafenib					
Limited prospective data supporting rechallenge strategies	Oxaliplatin					
	Irinotecan					
	5FU/fluoropyrimidine					
Limited evidence for treatment in refractory setting	Pemetrexed					
	Gemcitabine					
	Temozolomide					
		Less Intermediate More sensitive sensitive sensitivity				

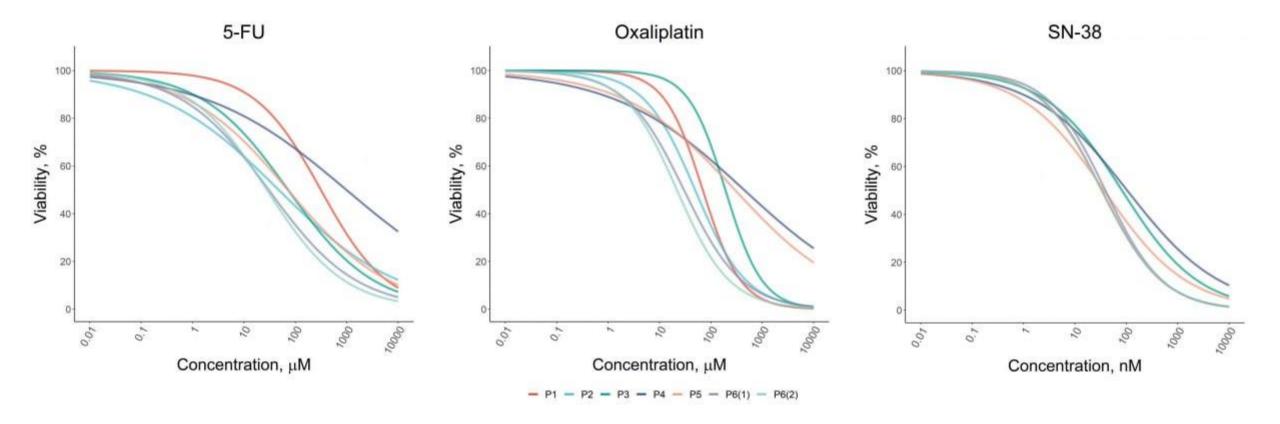
www.nature.com/emm

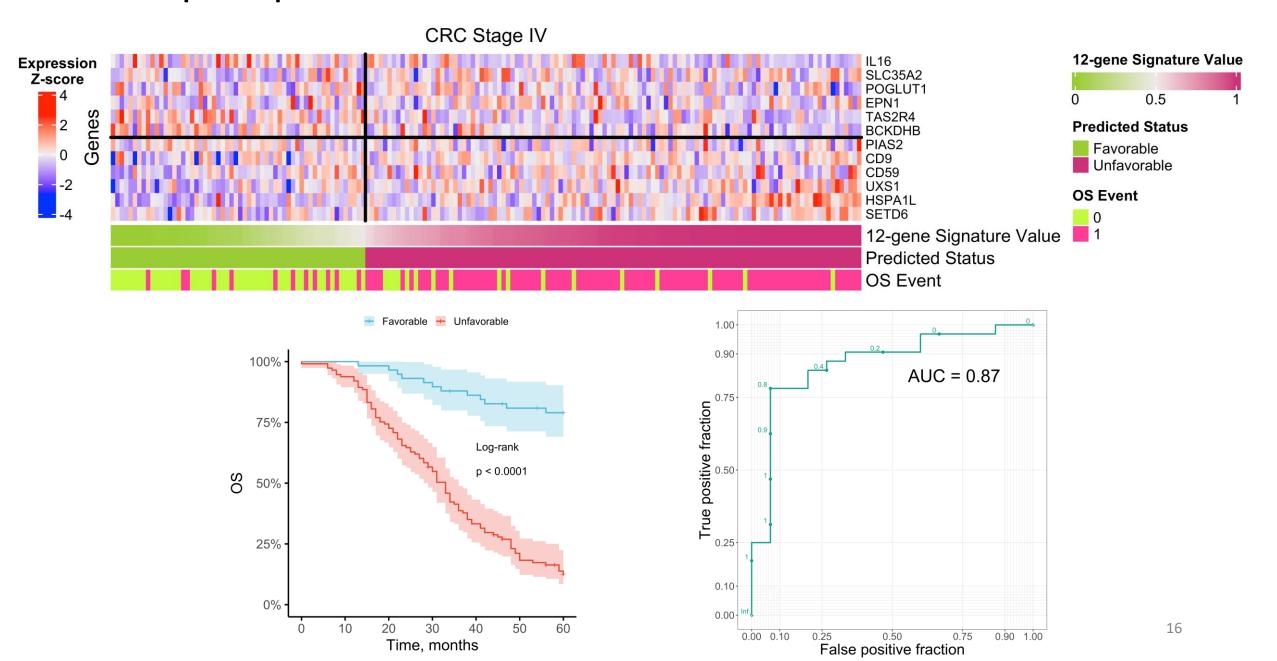
REVIEW ARTICLE OPEN

Patient-derived tumor organoids: a new avenue for preclinical research and precision medicine in oncology


Lucie Thorel^{1,2,9}, Marion Perréard^{1,3,9}, Romane Florent^{4,9}, Jordane Divoux^{1,2,4}, Sophia Coffy⁵, Audrey Vincent⁶, Cédric Gaggioli⁷, Géraldine Guasch⁸, Xavier Gidrol⁵, Louis-Bastien Weiswald^{1,2,4,10 ⋈} and Laurent Poulain^{1,2,4,10 ⋈}


© The Author(s) 2024


Over the past decade, the emergence of patient-derived tumor organoids (PDTOs) has broadened the repertoire of preclinical models and progressively revolutionized three-dimensional cell culture in oncology. PDTO can be grown from patient tumor samples with high efficiency and faithfully recapitulates the histological and molecular characteristics of the original tumor. Therefore, PDTOs can serve as invaluable tools in oncology research, and their translation to clinical practice is exciting for the future of precision medicine in oncology. In this review, we provide an overview of methods for establishing PDTOs and their various applications in cancer research, starting with basic research and ending with the identification of new targets and preclinical validation of new anticancer compounds and precision medicine. Finally, we highlight the challenges associated with the clinical implementation of PDTO, such as its representativeness, success rate, assay speed, and lack of a tumor microenvironment. Technological developments and autologous cocultures of PDTOs and stromal cells are currently ongoing to meet these challenges and optimally exploit the full potential of these models. The use of PDTOs as standard tools in clinical oncology could lead to a new era of precision oncology in the coming decade.


Experimental & Molecular Medicine (2024) 56:1531-1551; https://doi.org/10.1038/s12276-024-01272-5

Name of the study	Identifier	Estimated study					
· ·		completion date					
Clinical trials in which principal outcome include comparison between PDTO and clinical response							
Translational Analysis In Longitudinal Series of Ovarian Cancer Organoids (TAILOR)	NCT04555473	May-23					
Clinical Study on Drug Sensitivity Verification or Prediction of Therapy for Breast Cancer by Patient- Derived Organoid Model	NCT03544047	Jul-21					
Drug Sensitivity Correlation Between Patient-Derived Organoid Model and Clinical Response in NSCLC Patients	NCT03453307	Jul-21					
Establishing Organoids From Metastatic Pancreatic Cancer Patients, the OPT-I Study	NCT03500068	Sep-22					
OPPOSITE: Outcome Prediction Of Systemic Treatment in Esophagogastric Carcinoma	NCT03429816	Aug-22					
Organoid Based Response Prediction in Esophageal Cancer (RARESTEM/Org)	NCT03283527	Jan-20					
Organoids in Predicting Chemoradiation Sensitivity on Rectal Cancer	NCT03577808	Nov-20					
Patient-derived Organoid Model and Circulating Tumor Cells for Treatment Response of Lung Cancer	NCT03655015	Dec-22					
Pharmacotyping of Pancreatic Patient-derived Organoids	NCT05196334	Dec-24					
Cetuximab Sensitivity Correlation Between Patient- Derived Organoids and Clinical Response in Colon Cancer Patients.	NCT04906733	Dec-23					
Study on the Consistency Evaluation of Organoids Used in the Clinical Treatment of Ovarian Cancer With Anti- tumor Drugs	NCT05175326	Nov-21					
Development of a Prediction Platform for Neoadjuvant Treatment and Prognosis in Pancreatic Cancer Using Organoid	NCT04777604	Jan-26					
Organoids-on-a-chip for Colorectal Cancer and in Vitro Screening of Chemotherapeutic Drugs	NCT04996355	May-24					
Development of a Prediction Platform for Adjuvant Treatment and Prognosis in Resected Pancreatic Cancer Using Organoid	NCT04736043	Jan-26					
Study on Consistency Evaluation for Drug Sensitivity of Patient-Derived Organoid Model From Cholangiocarcinoma Patients	NCT05634694	Dec-24					
SOTO: Treatment Sensitivity of Organoids to Predict Treatment Outcome	NCT05400239	May-23					
The Culture of Advanced or Recurrent Ovarian Cancer Organoids and Drug Screening	NCT05290961	Dec-24					
The Culture of Ovarian Cancer Organoids and Drug Screening	NCT04768270	Dec-24					
Tailoring Treatment in Colorectal Cancer (TargetCRC)	NCT05401318	Jan-27					
3D Bioprinted Models for Predicting Chemotherapy Response in Colorectal Cancer With/Without Liver Metastases	NCT04755907	Dec-23					

Спасибо за внимание!

